Retrieval of temperature and moisture profiles from AMSU-A and AMSU-B measurements

نویسنده

  • Philip W. Rosenkranz
چکیده

The NOAA-15 weather satellite carries the Advanced Microwave Sounding Units-A and -B (AMSU-A, AMSU-B) which measure thermal emission from an atmospheric oxygen band, two water lines, and several window frequencies. An iterated minimum-variance algorithm retrieves profiles of temperature and humidity in the atmosphere from this data. Relative humidity is converted into absolute humidity with use of the retrieved temperature profile. Two important issues in the retrieval problem are modeling of the surface and clouds. An a priori surface emissivity is computed on the basis of a preliminary classification, and the surface brightness spectrum is subsequently adjusted simultaneously with the moisture profile retrieval. Cloud liquid water is constrained by a condensation model that uses an extended definition of relative humidity as a parameter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of hydrometeors using microwave brightness temperature data from AMSU-B over Iran

The Advanced Microwave Sounding Unit-B (AMSU-B) installed on the NOAA-15, 16, and 17 satellites, is the new generation of a series of microwave imagers/sounders that can sense atmospheric moisture and other hydrometeors through clouds. This paper demonstrates the potential of multi-frequency AMSU-B data for classifying different types of hydrometeors. Ten types of these hydrometers have been co...

متن کامل

Potential of Advanced Microwave Sounding Unit-A (AMSU-A) and AMSU-B measurements for atmospheric temperature and humidity profiling over land

[1] A neural network retrieval method has been applied to investigate AMSU-A/ AMSU-B atmospheric temperature and humidity profiling capabilities over land. The retrieval method benefits from a reliable estimate of the land emissivity and skin temperature as well as first guess information regarding the temperature-humidity profiles. It has been applied on a large geographic area (60 W–60 E, 60 ...

متن کامل

A Study to determine the accuracy of satellite measurements for the salinity pattern and surface temperature of Persian Gulf using statistical method

The aim of this paper is to determine the sea surface salinity (SSS) and temperature (SST) of Persian Gulf by using the AMSU-B sensor data of NOAA-16 satellite. A multiple linear regression method was used by statistical computing software R on AMSU-B data and in-situ data. Based on the results, the correlation coefficient (R2) for salinity and temperature was 0.85 and 0.94, respectively. Also,...

متن کامل

AMSU-B Observations of Mixed-Phase Clouds over Land

Measurements from passive microwave satellite instruments such as the Advanced Microwave Sounding Unit B (AMSU-B) are sensitive to both liquid and ice cloud particles. Radiative transfer modeling is exploited to simulate the response of the AMSU-B instrument to mixed-phase clouds over land. The plane-parallel radiative transfer model employed for the study accounts for scattering and absorption...

متن کامل

LAND SURFACE EMISSIVITY ESTIMATION AT 89 AND 150 GHz FROM AMSU-B MEASUREMENTS

Most of the works on estimation of land surface emissivity from satellite radiometric measurements are performed at the frequencies d 100 GHz in the past two decades [1-3]. In the frequency range of AMSU-B (89-183 GHz) the land surface emissivity problems draw attention from scientific community recently mainly because of difficulty associated with precipitation retrievals over land. For liquid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Geoscience and Remote Sensing

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2001